Глава 16. Лучшая десятка профессиональных инструментов для работы с электроникой

Импульсы здесь, импульсы там. Считаем мегагерцы. Источник питания с изменчивой внешностью. Формирование специальных сигналов. В поисках иных миров. Анализируй это. Трио профессионалов. Как найти скидки на полезные инструменты.

Глава 17. 10 формул, которые должен знать каждый

Соотношения закона Ома. Расчеты сопротивления. Расчет сопротивления последовательных резисторов. Расчет сопротивления параллельных резисторов. Расчет емкости параллельных конденсаторов последовательных конденсаторов, трех и более последовательно соединенных конденсаторов, Расчет энергетических уравнений, Расчет постоянной времени. RC-цепочки, Расчеты частоты и длины волны, частоты сигнала,длины волны сигнала.


Данный учебный материал предназначен в первую очередь, для людей которые только начинают разбираться с миром электроники с самых азов, изучив данный материал вас уже никто не рискнет назвать чайником в электронике

Скачать учебный курс "Электроника для чайника"
Электроника для начинающих чайников

Глава 1. От электронов к электронике

Что же такое электричество? Что такое электрон? Перемещение электронов по проводникам. Напряжение — движущая сила. Важная объединяющая теория: электроны, проводники и напряжение.
Откуда берется электричество? Батареи: когда другие уже устали, они все еще полны энергии, Тепличные условия — электрические розетки. Солнечные батареи, Где применяются электрические компоненты? Полный контроль над электричеством. Детектирование с помощью сенсоров.
Когда электричество становится электроникой Создание простой схемы, что делать дальше. Инструменты для конструирования. Измерительные инструменты
Удивительный мир величин - Единицы измерения в электронике Переход к большим или меньшим величинам. Префиксы + единицы измерения = ?
Понятие о законе ОмаВыводы из закона Ома, hасчеты с применением больших и малых величин Мощность и закон Ома.

Глава 2. Безопасность людей и устройств

Шестое чувство в электронике, Опасность поражения электрическим током. Электричество = напряжение + ток. Постоянный или переменный ток. Как не пострадать от удара током. Оказание первой помощи.
Статическое электричество и его последствия. Как статика может превратить радиоэлемент в щепотку золы. Советы по предотвращению накопления статического электричества
Заземление рабочих инструментов
Работа с переменным током.

Глава 3. Рабочее место радиолюбителя.

Ручные инструменты, без которых не обойтись. Отвертка. Обращение с утконосыми плоскогубцами. Увеличительные стекла. Место для инструментов. Наполняем мастерскую. Где хранить инструменты. Приспособления, которые не нужны каждый день (но могут пригодиться)
Работаем на сверлильном станке. Обрезка деталей при помощи станка или циркулярной пилы. Выполнение деликатных работ при помощи бор-машинки. Содержание инструментов чистыми и смазанными.
Сияющая электроника.Масло и смазка для содержания деталей. Инструменты для дальнейшей чистки и конструирования. Клеим на века. Обустройство лаборатории радиолюбителя. Основные ингредиенты идеальной лаборатории. Выбор идеального места для занятий электроникой. Тройная угроза: холод, жара и влажность

Глава 4. Первое знакомство: наиболее распространенные электронные радиодетали.

Пусть живут резисторы. Резисторы и значения их сопротивлений.Красный, синий, голубой — выбирай себе любой. Понятие допуска резистора.
Конденсаторы: резервуары электричества. Быстрый взгляд внутрь конденсатора. Фарады: большие и малые. Контроль рабочего напряжения. Диэлектрик здесь, диэлектрик там. Какую емкость имеет мой конденсатор? Когда микрофарад — не совсем микрофарад. Воздействие тепла и холода. Положительные отзывы о полярности конденсаторов. Изменение емкости.
Диоды. Важные параметры диодов: максимальные токи и напряжения. Где у диодов плюс? Забавы со светодиодами. Резисторы в паре со светодиодами
Транзистор: восьмое чудо света. Изучаем терминологию транзисторов. По поводу корпусов транзисторов. Вставляем транзистор в схему. Типы транзисторов.
Микросхемы Номера ИМС. Что такое цоколевка ИС? Самостоятельное исследование ИМС

Глава 5. Потребительская корзина радиолюбителя

Электрические соединения. Провода. Соединения и соединители. Включаем питание. Врубим питание от батарей. Питание от солнечных батарей. Включение и выключение электричества. Вкл. и Выкл. с помощью переключателей.
Щелчок реле Логика решений. Логические элементы. Использование логики в электронике. Основные логические элементы. Контроль частоты кварцевых резонаторов и индуктивных контуров. Накопление энергии в катушках индуктивности. Частота кварцевого резонатора. Детектирование.
Детекторы движения. Тепло, теплее, горячо: сенсоры температуры. Вибрации двигателя постоянного тока. Не пошуметь ли немножко? Говорит громкоговоритель. Генераторы звука.

Глава 6. Читаем схемы

Что такое принципиальная схема и зачем она нужна. Знакомство с символикой схемотехники. Простейшие схемотехнические символы
Условные графические обозначения электронных радиоэлементов.Символы логических элементов. Соблюдение полярности. Один элемент на все случаи жизни: радиодетали с переменным номиналом.
Фоточувствительные компоненты: видят свет даже в конце туннеля Альтернативные условные обозначения

Глава 7. Основы функционирования электронных схем

Из чего состоит электронная схема? Простейшие схемы. Питание лампы накаливания. Изменение величины тока с помощью резистора. Параллельное (последовательное) соединение элементов. Последовательное соединение. Параллельное соединение. Исследование схемы делителя напряжения. Измерение тока путем измерения напряжения. Резисторы и конденсаторы: одна команда.
Как работает динамический дуэт конденсатора и резистора Включение и выключение схем при помощи RC-цепи.
Поговорим о транзисторах. Транзистор как ключ. Транзистор как усилитель. Что еще могут делать транзисторы?
Операционный усилитель. Упрощение устройств при помощи интегральных схем

Глава 8. Все, что нужно знать о пайке

Паять иль не паять: вот в чем вопрос. Вещи, абсолютно необходимые для пайки. Выбор подходящего паяльника. Выбор наконечника. Подготовка паяльного оборудования. Успешная пайка. От холодной пайки, как от чумы.
Пайка и статическое электричество. Пресечение электростатического разряда в зародыше. Меры по борьбе со статическим электричеством.
Отпаиваем и перепаиваем. Пружинный отсос в работе. Отсос с грушей. Полезные советы и рекомендации.

Глава 9. Как подружиться с мультиметром

Как пользоваться мультиметром. Помните: безопасность прежде всего. Что выбрать: цифровой или аналоговый мультиметр? Мультиметр на ладони. Базовые свойства мультиметра. Входы мультиметра и их функции. Точность, разрешающая способность и чувствительность.
Мультиметр и аксессуары Максимальный предел. Автоматическая подстройка диапазона. Дополнительные полезные функции. Настройка мультиметра. Пять основных измерений, которые можно выполнить с помощью мультиметра. Измерение напряжения. Измерение тока Измерение электропроводности проводников. Тестирование исправности переключателя. Тестирование предохранителей Тесты резисторов, конденсаторов и других электронных компонентов. Тестирование резисторов. Тестирование потенциометров, диодов, конденсаторов, транзисторов

Глава 10. Логический пробник и осциллогра

С логическим пробником в джунгли электроники. Звук, свет, занавес! Слишком быстрые сигналы (даже для человека-молнии). Познай свою схему.
Приступая к работе с логическим пробником. Пожалуйста, соблюдаем стандартные меры безопасности. Подключение пробника к схеме. Когда индикаторы молчат. Приглядимся к осциллографу
Что же делает осциллограф? Основные функции осциллографа. Что выбрать: настольный, ручной или компьютерный? Полоса частот и разрешающая способность осциллографа. Вся подноготная осциллографа. Что значат все эти бегущие линии. Так когда же нужно использовать осциллограф? Подготовка осциллографа к работе: тестируем — три, два, один! Настройка и предварительное тестирование. Жива ли еще батарейка? Препарация радио в целях изучения аудиосигналов. Тестирование частоты сигналов в схемах переменного тока.

Глава 11. Мои первые макетные платы

Взгляд на беспаечные макетные платы. Беспаечные макетные платы внутри и снаружи. Макетные платы: большие и не очень. Создание схемы с использованием макетной платы. Почему нужно использовать зачищенные провода? Сборка схем на макетных платах. Аккуратность — в плюс. Шаг от беспаечных плат к стационарным. Моделирование на перфорированных макетных платах. Как стать круче в скручивании проводов

Глава 12. Делаем собственные печатные платы

Конструкция печатной платы. Как медь превращается в схему. Готово, заряжай: приступаем к изготовлению собственной платы. Выбираем подходящий лист меди. Режем и чистим.
Фотографический метод изготовления печатных плат. Изготовление маски. Позитивная и негативная сенсибилизация. Зеркальное отражение печатной платы. Подготовка печатной платы к травлению. Да будет свет: экспозиция и проявка печатной платы. Изготовление печатных плат по методу переноса с пленки. Перенос топологии на слой меди.
Выбор метода получения собственной топологии. Мои гравюры: вытравливаем печатные платы сами Шаг первый: осмотр платы. Чистка платы. Внимание, пожалуйста! С волнением о травлении. Приготовление травителя. Нам бы только что-то потравить. Последние приготовления и сверление. Печатные платы от профессионалов — делаем заказы. Теперь вы конструктор печатных плат. Использование САПР для конструкторских работ. Что может Sprint Layout Приступаем к работе по проектированию печатной платы.

Глава 13. Волнующий мир микроконтроллеров

Как работают микроконтроллеры? Что находится внутри микроконтроллера? Знакомство с микроконтроллером BASIC Stamp. Знакомство с семейством OOPic, с Basic Stamp 2
разработка схемы, программирование микроконтроллера. Вносить изменения так легко, Добавление в схему переключателя, Куда идти дальше?

Глава 14. Создаем собственные электронные устройства

С места в карьер: что для этого нужно. Делаем классный, отпадный мигающий фонарик. Таймер 555 на ладони. Перечень элементов для мигающего фонарика. Играем с пьезоэлектриками. Пьезо- что?
Эксперименты с пьезоэлектричеством. Подбор компонентов для пьезоэлектрического барабана. Конструируем великолепный инфракрасный детектор, который "видит в темноте". Выслеживая инфракрасный свет. Радиодетали, необходимые для сборки инфракрасного детектора
Как работает сигнализация.Перечень элементов для сигнализации на основе таймеров 555, Как потеряться и снова найтись при помощи электронного компаса, Заглянем под крышку компаса, Перечень элементов для электронного компаса, Да будет звук, когда есть свет., Как заставить будильник выполнять общественно-полезную работу, Перечень элементов для световой сигнализации,Маленький усилитель — серьезный звук
Устройство мини-усилителя. Удобный и компактный измеритель влажности. Как работает измеритель влажности. Классный генератор светомузыкальных Подключение светодиодов

Глава 15. Настоящий робот в вашей семье

Роботы: взгляд под микроскопом. Подготовка к конструированию робота. Изучаем детали машин. Тело для робота Сборка и монтаж электродвигателей Установка шарнирного колеса. Органы управления. Добавим роботу немного мозгов.
Размышления о микроконтроллерах. Обычные моторы — прочь, радиоуправляемые сервомоторы — сюда. Внутри сервомотора. Доводка серводвигателей. Поставим робота на колеса. Соединение робота с макетной платой. Как научить робота думать

Часть I Начала начал электроники

Говорите, что всю жизнь мечтали познакомиться с электроникой поближе, но не знали с чего начать? Тогда вы оказались в нужное время в нужном месте!

В последующих глазах будут освещены фундаментальные основы электроники и физики электронов: что они собой представляют и почему следует о них знать. Однако не стоит беспокоиться - вам не придется умирать от скуки над научнмми трудами по теоретической физике: мм подадим основные положения и правила в виде, легко доступном дль усвоения. Кроме того, здесь же вы познакомитесь с простыми рекомендациями по безопасности. Электроника - забавная вещь, но только к том случае, если вы не обожжетесь, не поджаритесь на электрическом стуле и не заедете себе в глаз взбесившимся резистором.

Глава 1 От электронов к электронике

В этой главе...
Разъяснение роли электронов, проводников и напряжения
Вопросы генерации электричества
Некоторые электронные компоненты
Соединение отдельных компонентов в электрическую схему
> Знакомство с некоторыми инструментами электроники
> Единицы измерения
> Закон Ома

Когда вы включаете поутру кофеварку, вы используете электричество. Когда вы щелкаете кнопкой на телевизоре, чтобы просмотреть повторный показ сериала Секс и город, - опять же, вы снова так или иначе задействуете электричество.

Поскольку вы используете электричество и электронные устройства постоянно, вам, наконец, становится любопытно попробовать собрать какую-то безделушку самому (или самой). Отлично. Но перед тем, как вы сможете окунуться в мир проводов и батарей, не помешает узнать, откуда взялся корень электро- в словах электричество и электроника.

В этой главе вы узнаете все о том, как электроны служат для образования электричества, и как обуздать это электричество в целях освоения основ электроники. Вы также познакомитесь с инструментами и компонентами, с которыми позже будете забавляться в главах 14 и 15.

Что же такое электричество?

Как и множество вещей в нашей жизни, электричество сложнее, чем может показаться на первый взгляд. Должно одновременно совпасть множество условий, чтобы между вашей рукой и железной ручкой двери проскочила искра, или появилась энергия, чтобы можно было включить новейший суперкомпьютер. Для понимания того, как работает электричество, будет полезно разбить столь общий вопрос на частные.

Что такое электрон

Электрон представляет собой один из основополагающих "кирпичиков", составляющих природу. Электроны "приятельствуют" с другими такими "кирпичиками" - протонами. Как первые, так и вторые очень малы, и содержатся в..., ну, в общем, во всем на свете. Мельчайшая частичка пыли одержит миллионы миллионов электронов и протонов, так что можете представить, сколько же их содержится в каком-нибудь борце сумо.

Электроны и протоны имеют равные, но противоположные по знаку электрические заряды: у электронов отрицательные, а у протонов - положительные. Противоположные заряды всегда притягиваются друг к другу. Вы можете продемонстрировать самому себе подобное притяжение, сблизив пару магнитов. Если ближайшие концы магнитов представляют собой разные полюса, то они моментально встретятся и приклеятся друг к другу. Если же концы будут с одним и тем же по знаку полюсом, то они отшатнутся друг от друга, как политики после горячих телевизионных дебатов. Таким образом, поскольку электроны и протоны имеют разные знаки, они притягиваются друг к другу. Это притяжение действует, как клей, на уровне микромира, скрепляя собой всю материю Вселенной.

Хотя протоны относительно статичны, об электронах подобного не скажешь - они весьма ветрены и не собираются сидеть на одном месте. Они могут - и чаще всего так и делают - перемещаться между объектами. Например, пройтись в сухую погоду по ковру и остановиться на стальной дверной ручке; электроны, бегущие между этой ручкой и вашей ладонью, вызывают искру, которую вы сможете увидеть лишь иногда, но, определенно, почувствуете всегда. Молния тоже состоит из цепочки движущихся электронов - на этот раз они перемещаются между тучами и землей. Все это примеры неприрученной, дикой электрической энергии.

Перемещение электронов по проводникам

Как перебегают электроны из одного места в другое? Ответ на этот вопрос приоткроет еще одну частицу электрической мозаики. Чтобы перемещаться, электроны используют так называемые проводники. Таким образом, электричество представляет собой не что иное, как направленное движение электронов в проводнике.

В качестве проводников может выступать множество материалов, но одни из них предпочтительнее других. Электроны передвигаются значительно легче по металлам, чем по пластику. Вообще, хотя в пластмассе они и будут перемещаться вокруг своих приятелей протонов, им куда приятнее сидеть дома, чем куда-то бежать. Но в металле электроны вольны двигаться, куда захотят. Можно провести аналогию между свободными электронами в металле и камешками, брошенными на лед. Электроны скользят сквозь металл, как по льду. А вот пластик - изолятор -больше напоминает песок: камни вряд ли сдвинутся далеко от того места, куда упали, как и электроны внутри пластмассы.

Так какие же материалы представляют собой хорошие проводники, а какие - хорошие изоляторы? Обычно в качестве проводников используют медь и алюминий (чаще - медь). А в качестве изоляторов, как правило, выступают пластмасса и стекло.

Мерой способности электронов перемещаться по материалу служит сопротивление. Медный провод большого диаметра имеет меньшее сопротивление потоку электронов, чем провод из той же меди, но меньшего диаметра. Вам стоит как следует уяснить для себя смысл сопротивления, потому что каждый проект, связанный с электроникой, включает в себя резисторы. Резисторами называют элементы с определенным сопротивлением, которое помогает контролировать поток электронов в проводниках.

Напряжение - движущая сила

В предыдущих разделах пояснялось, как электроны двигаются и почему в проводниках они передвигаются более свободно. Но для того, чтобы они перемещались от одного места к другому, нужно какое-то воздействие. Эта сила, действующая между зарядами с разными знаками, называется электродвижущей силой, или напряжением. Отрицательные электроны двигаются к положительному заряду посредством проводника.

Помните, как Бенджамин Франклин запускал в шторм воздушного змея? Электрическая искра, пробежавшая по змею, помогла ученому сообразить, как двигается электрический ток. В этом случае электроны прошли по мокрому от дождя шнуру, который служил проводником. Если попробовать проделать тот же фокус с искрой, но при сухом шнуре, то у вас не получится ничего даже близко похожего. Напряжение представляет собой разность электрических потенциалов между отрицательно заряженными тучами и землей, которая и гонит электроны вниз по шнуру.

Ни за что не пробуйте повторить эксперимент Франклина сами! Запуская воздушных змеев в грозу, вы играете с молнией, которая может в мгновение ока превратить вас в кусочек тоста.

Что происходит с протонами?

Вы могли обратить внимание на то. что мы практически ничего не говорим о протонах. Хотя они, как и электроны, представляют собой элементарные заряженные частицы, только с положительным зарядом, мы фокусируем свое внимание на электронах прежде всего потому, что они значительно более подвижны, чем протоны. В большинстве случаев именно электроны передвигаются по проводнику, и именно их отрицательный заряд представляет собой электричество. Однако в некоторых случаях, например, в батареях, положительные заряды также перемещаются по проводнику. Для объяснения этого процесса вы должны узнать, что такое ионы, атомы, электрохимические ротации и, возможно, даже рассмотреть гипотезу о «дырках», широко используемую в полупроводниковой физике. Однако, поскольку для выполнения задач, с которыми вы столкнетесь в этой книге (да и в большинстве любительских проектов тоже), вам необязательно владеть теорией в столь полном объёме, мы оставим более сложные выкладки Эйнштейну и займемся поближе одними электронами.

Обычный ток в отличие от реального тока

Первые исследователи полагали, что электрический ток представляет собой движение положительных зарядов, поэтому они описали явление тока как поток положительно заряженных частиц к отрицательному потенциалу. Только значительно позднее эксперименты доказали само существование электронов и определили, что это они двигаются от отрицательного к положительному потенциалу. Однако традиция осталась в силе, и с тех пор движение электрического тока на всех схемах показывается стрелками в противоположном реальному потоку электронов направлении. Поэтому обычный ток представляет собой (условное) движение заряженных частиц от положительного к отрицательному потенциалу и этим противоположен току реальному.

Важная объединяющая теория: электроны, проводники и напряжение

Предположим, у вас есть отрезок провода (проводник), и вы хотите присоединить его к положительному выводу батареи, а другой его конец - к ее отрицательному выводу. В этом случае электроны потекут от отрицательного потенциала к положительному. Этот поток электронов и является электрическим током. То есть соединение в одно целое электронов, проводника и напряжения позволяет получить электрический ток в той форме, которую можно так или иначе использовать.

Для того чтобы помочь вам описать то, как тип проводника и величина напряжения влияют на электрический ток, мы сочли удобным провести аналогию с тем, как давление воды и диаметр трубы влияют на поток воды по этой самой, трубе.

> Увеличение давления воды заставляет протекать по трубе большее ее количество. Это явление аналогично увеличению напряжения, которое приводит к усилению электрического тока в связи с тем, что большее количество электронов принимает участие в направленном движении.

> Использование трубы большего диаметра также позволяет пропустить по трубе больше воды при одном и том же давлении. Этот эффект можно сравнить с использованием провода большего диаметра, который позволяет электронам течь без препятствий при одном и том же напряжении, опять же приводя к большему электрическому току.

Откуда берётся электричество?

Итак, мы уже знаем, что электричество появляется тогда, когда напряжение в проводнике создает электрический ток. Однако где же берется нужная энергия, когда вы соединяете отрезком провода, выключатель и электрическую лампочку?

Существует множество различных источников электричества- от старых добрых фокусов типа "пройтись-по-ковру-и-дотронуться-до-дверной-ручки" и до современных солнечных батарей, но, чтобы упростить изучение данного вопроса, мы рассмотрим только три их типа, которые вы в подавляющем большинстве случаев и будете применять на практике: батареи, обычные бытовые розетки и солнечные батареи.

Батареи: когда другие уже устали, они все еще полны энергии

Для генерации положительного напряжения на одном выводе электрической батареи и отрицательного - на другом используется процесс электрохимических реакций. В батарее заряд создается помещением двух разных металлов в определенный тип химического вещества. Поскольку перед вами отнюдь не учебник по химии, мы не будем углубляться в особенности работы батарей - просто поверьте, что именно такая структура служит для получения напряжения.

Батареи имеют два вывода (выводами называются металлические площадки на концах батареи, к которым подключаются провода). Не сомневаемся, что вы часто используете батареи для питания электричеством переносных устройств, например фонарика. В фонаре от лампочки отходит два проводка, которые подключены к соответствующим выводам батареи. Что же происходит дальше? А вот что.

> Напряжение толкает электроны через провод от отрицательного вывода батареи к положительному.

> Электроны, движущиеся по проводу, проходят через нить накала электрической лампочки и заставляют ее светиться.

Благодаря тому, что электроны двигаются только в одном направлении, от отрицательного вывода батареи к положительному, электрический ток, генерируемый батареей, называется постоянным током(на схемах часто обозначается DC - direct current). Он является противоположностью переменному току, который мы рассмотрим в следующем разделе, где речь пойдет об электрических розетках.

Проводки, идущие от лампочки, должны быть подключены к обоим выводам батареи. Это позволяет электронам двигаться от одного из них к другому, проходя через лампочку. Если не создать электронам подобную петлю из проводников, то они не смогут течь вообще.

Тепличные условия - электрические розетки

Когда вы включаете лампу в электрическую розетку на стене, вы используете то электричество, которое выработала электростанция. Последняя может быть расположена на дамбе на реке или получать энергию от другого источника - например, атомной электростанции. Чаще всего, однако, используют процесс сжигания угля или природного газа. Направление, в котором текут электроны, меняется 100 раз в секунду, т.е. они совершают однонаправленное движение 50 раз в секунду. Такое изменение потока электронов называется переменным током (АС- alternative current).

Изменение направления тока с возвращением к первоначальному направлению представляет собой цикл, или период. Количество таких периодов переменного тока в секунду называется частотой и измеряется в специальных единицах - герцах (Гц). В странах Европы используется частота, равная 50 Гц, а в Северной Америке - 60 Гц, т.е. электроны меняют направление своего движения 120 раз в секунду.

Электричество, вырабатываемое гидроэлектростанцией, получается при вращении водой турбины с намотанным проводом внутри гигантского магнита. Одним из свойств взаимодействия проводников и магнитов является тот факт, что в присутствии магнита при движении проводника, в последнем возникает наведенный поток электронов. Сначала эти электроны двигаются в одном направлении, а потом, когда петля проводника поворачивается на 180 градусов, магнит заставляет электроны идти в обратном направлении. Подобное вращение и создает электрический ток.

Включить вилку в электрическую розетку весьма просто, но в большинстве случаев для ваших проектов понадобится постоянный, а не переменный ток. Если вы хотите пользоваться розетками, то вам нужно будет преобразовывать ток из переменного в постоянный. Это легко сделать, если имеется источник питания. Источником питания является, к примеру, зарядное устройство для вашего мобильного телефона: оно потребляет переменный ток и выдает постоянный, который служит для запитки аккумуляторов, подробнее о разных источниках питания вы сможете узнать в главе 3.

Безопасность, безопасность и еще раз безопасность! Важно уяснить и решить для себя в каждом конкретном случае - действительно ли вы хотите получать ток из настенной розетки? Использование батарей похоже на игры с милым домашним котенком, а питание от электричества в розетках - на приручение голодного льва. В первом случае вам грозят разве что поцарапанные руки, во втором же вы рискуете попасть на обед целиком. Если вам действительно столь необходимо подключиться к розетке, убедитесь, что понимаете, что делаете. Более подробные советы по безопасности приведены в главе 2.

Что появилось раньше: напряжение или ток

Электрические батареи являются источниками напряжения, которое создает электрический ток. В генераторах гидроэлектростанции возникающий ток создает напряжение. Что же появляется раньше? Этот вопрос напоминает другой известный философский спор - что появилось раньше: курица или яйцо? Напряжение, ток и проводники возможны только одноименно. Если к проводнику будет приложено напряжение, возникнет ток. Если этот ток течет по проводнику, значит на концах последнего появляется напряжение. Короче: не ломайте себе голову над подобными вопросами

Простой выбор: переменный ток или постоянный глазами чайника

Какая разница, какой ток использовать: переменный или постоянный? Оказывается, большая! Переменный ток дешевле получать и пересылать по линиям передачи, чем постоянный. Именно поэтому бытовое электричество обычно работает от переменного тока: всевозможные лампы, нагреватели и тому подобное.

Однако для проектов,предлагаемых в курсе электроника для чайника, значительно удобнее применять постоянный ток (как и во многих других случаях в электронике). Переменный ток несколько сложнее контролировать, поскольку неизвестно, в каком направлении он течет в каждый конкретный момент. Эта разница похожа из сложности ГАИ во время регулирования двухсторонней трассы сшестиполосным движением по сравнению с переулком с односторонним движением. Из этих соображений в нашей книге в большинстве схем будет использоваться именно постоянный ток.

Солнечные батареи

Они представляют собой полупроводниковые приборы. Как и обычные батареи, солнечные имеют проводки, подключенные к их противоположным выводам. Свет, попадающий на солнечную батарею, заставляет протекать в ней электрический ток. (Такая реакция на освещение является неотъемлемым свойством некоторых веществ и подробнее обсуждается во врезке "Причуды полупроводников". Курса электроника для чайника). После этого полученный ток течет через провода к устройству: к микрокалькулятору или к садовому светильнику около вашей входной двери.

Пользуясь калькулятором на солнечных батарейках, вы можете продемонстрировать окружающим, что работа устройства целиком зависит от количества света, попадающего на солнечные элементы. Включите калькулятор и наберите на клавиатуре несколько цифр (лучше что-нибудь побольше - на весь дисплей - например, сумму подоходного налога за прошлый год). Теперь закройте пальцем окошко солнечных батарей (оно обычно выглядит как прямоугольничек, закрытый прозрачным пластиком). После того как вы перекроете доступ свету, цифры на дисплее начнут блекнуть. Снимите палец с окошка, и они станут контрастными вновь. Следовательно, устройства, питающиеся от солнечных элементов, нуждаются в хорошей освещенности.

Где применяются электрические компоненты?

Электрические компоненты являются обязательной частью всех ваших электронных проектов. Вроде бы достаточно просто? Естественно, вы должны использовать какие-то средства для того, чтобы контролировать поток электричества, например как у реостата, который регулирует яркость освещения в комнате. Электричество просто-напросто запитывает энергией потребителей, таких как, скажем, акустические колонки. Другие же компоненты, которые называются сенсорами, служат для детектирования чего-либо (например света или тепла) и последующей генерации тока для ответной реакции, например включения сигнализации.

В этом разделе вы познакомитесь только с основными электрическими компонентами; главы же 4 и 5 содержат намного более обширный материал.

Контроль над электричеством

Электрические компоненты, или, как их еще называют, радиоэлементы, могут служить для того, чтобы контролировать электричество. Например, ключ соединяет электрическую лампочку с источником тока. Для того, чтобы разъединить их и, таким образом, выключить лампочку, нужно просто переместить ключ, создав разрыв цепи.

Можно упомянуть и другие элементы, служащие для контроля электричества: резисторы, конденсаторы, диоды, транзисторы. Намного больше информации вы сможете найти в главе 4.

Полный контроль над электричеством (ИС)

Интегральные микросхемы (ИМС, или просто - ИС) представляют собой компоненты, содержащие целую группу миниатюрных компонентов (резисторов, транзисторов, диодов, о которых вы прочтете в главе 4) в одном корпусе, который ненамного больше по размерам, чем один обычный радиоэлемент. Благодаря тому, что каждая ИС включает множество других компонентов, она одна может делать ту же работу, что и сразу несколько индивидуальных элементов.

Причуды полупроводников

Транзисторы, диоды, светоизлучающие диоды (СИД), интегральные схемы и другие электронные устройства состоят из полупроводников, а не проводников. Полупроводником называется материал, такой как кремний, свойства которого имеют общие черты как с проводниками, так и с изоляторами. Кремний - довольно важная штука в электронике. Фактически его именем даже назнали целую долину в Калифорнии. В свободном состоянии кремний проводит ток очень слабо, но при добавлении других веществ, например боpa и фосфора, становится проводником. Если добавляется фосфор, то кремний принимает форму полупроводника так называемого "n"-типа, если же используется бор, то он становится полупроводником "р"-типа. Полупроводник "n"-типа имеет больше электронов, чем обычный полупроводник, а полупроводник "р"-типа, соответственно, меньше.

Когда области полупроводника, содержащие бор и фосфор, располагаются в кремнии рядом друг с другом, получается так называемый "рn"-переход. В таком переходе ток течет только в одном направлении. Диоды - элементы, которые служат для преобразований переменного тока в постоянный с помощью течения тока, проходящего в одним напранлении, - как раз и представляют собой сегмент, состоящий из "pn"-перехода. Под воздействием света "pn"-переход генерирует электрический ток; это свойство используется в солнечных батареях. С другой стороны, если пропустить через переход электрический ток, то выделится свет, так работают светоизлучающие диоды (СИД).

В транзисторах используются переходы с тремя прилегающими областями с добавленными примесями. К примеру, одна с фосфором, вторая с бором, третья снова с фосфором, т.е. получается структура типа "npn". Ток в любом случае подастся на среднюю область(так называемая база). В большинстве электронных проектов вы будете работать с компонентами, сделанными из полупроводников, такими как транзисторы, диоды и интегральные схемы. Именно полупроводниковая технология позволила значительно уменьшить размеры электронных устройств и создать, в частности, карманные компьютеры и радиоприемники.

Примером интегральной схемы может служить аудиоусилитель. Такой усилитель можно использовать, чтобы увеличить мощность аудиосигнала. Например, если у вас есть микрофон, его выходной сигнал проходит через аудиоусилитель и становится достаточно мощным для того, чтобы быть услышанным из акустических колонок.

Есть еще один тип ИС, широко использующийся в электронных проектах: микроконтроллер. Это такой тип электронной ИС, который может быть запрограммирован для управления сложными устройствами, например, роботами. Мы дойдем до обсуждения микроконтроллеров в главе 13.

Детектирование с помощью сенсоров

Некоторые электрические компоненты генерируют ток, если подвергнуть их воздействию света или звука. Полученный ток можно использовать совместно с некоторыми компонентами, упомянутыми выше, для того, чтобы контролировать электричес включать или выключать различные устройства, например электрические лампы или громкоговорители.

Детекторы движения, сенсоры освещенности, микрофоны и датчики температуры - все генерируют электрический сигнал в ответ на какое-либо воздействие (соответственно движение, свет, звук и температуру). Эти сигналы могут затем использоваться для включения или выключения других устройств. Высокий уровень сигнала может, скажем, включать что-то, а низкий - выключать. К примеру, когда к вашей двери подходит очередной рекламный агент, детектор движения может включать свет (хотя лучше - пожарную сигнализацию).

На рис. 1.1 показаны диаграммы некоторых сигналов, с которыми вам придется часто встречаться.

Сигнал постоянного тока с амплитудой +5 В: высокий уровень.

Сигнал постоянного тока с амплитудой 0 В: низкий уровень.


Прямоугольные импульсы (меандр) постоянного тока с амплитудой 0-5 В: сигнал осциллятора (устройства, генерирующего колебания попеременно высокого и низкого уровней); если подать такой сигнал на электрическую лампу, то она будет постоянно мигать. Синусоидальный сигнал переменного тока с амплитудой -5...+5В. Такой сигнал приходит от микрофона, который генерирует переменный ток, используемый в качестве входного сигнала, например, усилителя. Микрофон генерирует форму сигнала, изображенную на рис. 1.1, когда на него воздействует звук камертона. Обратите внимание на то, что переходы от -5 до +5 В для синусоидального сигнала, изображенного на рисунке, постепенны, в то время как у прямоугольного сигнала они предельно резкие.

Более подробно о различных типах сенсоров вы сможете узнать в главе 5.

Питание

Электричество может подпитывать компоненты, чтобы они генерировали свет, тепло, звук, совершали движения и так далее. К примеру, электрический ток, подаваемый на двигатель постоянного тока, заставляет крутиться вал последнего, а заодно и детали, механически связанные с валом.

Вы можете запитать электричеством акустические колонки, электрические лампы, светодиоды, двигатели. В главах 4 и 5 будет рассказано об этих и других типах электрических компонентов.

Когда электричество становится электроникой

Если нужно использовать электричество, чтобы заработало какое-либо устройство, например, магнитофон, то это значит, что вы окунулись в мир электроники. Несомненно, вам не терпится создать собственную электронную поделку. В этом разделе будут описаны основы того, как взаимодействуют между собой электроника и ее устройства.


Создание простой схемы

Возьмем батарейки, резистор, светодиод и кусочки проводов и соберем их вместе - и вот перед вами простая электронная схема. Вот что представляет собой схема: провода, соединяющие компоненты таким образом, что через них ток течет и возвращается обратно к источнику питания.

На рис. 1.2 показана простейшая схема. Части схемы (также называемые компонентами) размещены на так называемой макетной плате и соединены между собой при помощи проводов. Принцип работы макетной платы, вкратце, таков: на ней есть отверстия, в которые удобно вставлять электронные компоненты для построения простых схем. Если вы останетесь удовлетворены результатом своей работы, то затем сможете перенести схему на печатную плату (об особенностях построения схем на макетных платах см. главу 11).

На рис. 1.2 показаны провода, присоединенные к обоим выводам батареи. Такое подключение позволяет току вытекать из батареи, проходить через светодиод и другие компоненты (в данном случае - резистор) и возвращаться в батарею, замыкая, таким образом, цепь с током. Схему можно довести до логического конца, присоединив ее к металлическому шасси, например к металлическому корпусу магнитофона. Такое соединение называется заземлением или, просто, землей и используется в качестве опорной точки для всех напряжений схемы. Заземление может как присоединяться к настоящей земле, так и быть отделено от нее, но в любом случае его потенциал служит точкой, от которой отсчитываются величины всех напряжений схемы. Более подробно вопросы заземления будут обсуждаться в главе 6.

Реальную схему можно представить в виде схемы принципиальной. Принципиальная схема представляет собой чертеж, на котором показано, как соединены между собой компоненты. Посмотрите на принципиальную схему, изображенную на рис. 1.3 и соответствующую той поделке, которую мы собрали ранее на рис. 1.2. Вы можете обратиться к главе 6, чтобы изучить множество других схем.


Что делать дальше

Если вы уже жаждете построить простую схему, чтобы проверить свои знания на практике, обратитесь к главе 14. К примеру, вы можете собрать с помощью макетной платы схему, которая генерирует сигнал тревоги, когда в комнате включается свет. Конструирование подобных вещиц - приятный способ познакомиться поближе с электроникой. Однако не стоит сразу прыгать в омут схемотехники, если вы совсем зеленый новичок - для начала прочтите еще несколько глав этой книги, особенно главу 2, в которой речь пойдет о безопасности.

После того как вы соберете парочку учебных проектов, представленных в главе 11, и как следует набьете руку, вы сможете перейти к главе 15, где вам предстоит серьезная работа - вплоть до сборки робота. Эти проекты занимают куда больше времени, но и результат оправдывает себя на все сто.


После того как вы поднатореете на проектах из этой книги, вы сможете самостоятельно двигаться дальше. Одним из мест, где всегда можно черпать идеи, является, конечно, Интернет. Мы порекомендуем вам, прежде всего, два сайта: discovercircuits. com и electronics-lab.com.

По ходу дела знакомимся с инструментами

Одной из самых замечательных вещей в электронном конструировании является то, что вам волей-неволей приходится иметь дело с какими-то новыми инструментами и электронными компонентами, чтобы посмотреть, что же из них можно собрать. Вы будете использовать одни инструменты, чтобы соединять компоненты схем, и другие, чтобы контролировать их работу.


Инструменты для конструирования

Наверняка вам будет приятно услышать, что для начала нужно не так уж много инструментов. Для того чтобы приступить к сборке проектов, приведенных в главе 14, вам понадобятся кусачки, утконосые плоскогубцы, щипцы для зачистки проводов и пара отверток.

Если же вы разрабатываете уже конечный вариант схемы, то можете добавить к этому списку паяльник для соединения элементов между собой. Выбор паяльника мы обсудим в главе 8.


В процессе работы, несомненно, вам потребуются и другие инструменты, которые было бы неплохо иметь под рукой. Возможно, вам пригодится магнит, чтобы вытаскивать винты и прочую мелочь из всяких труднодоступных щелей, куда они непременно попадут. Смотрите главу 3, где подробно описана комплектация рабочего места радиолюбителя.


Измерительные инструменты

При построении схемы и, тем более, при проверке ее работоспособности совершенно необходимо проводить измерения, чтобы понять- действительно ли схема работает, как запланировано, все ли собрано верно. Среди этих инструментов прежде всего следует обратить внимание на мультиметр, осциллограф и логический пробник. Все они подробно описаны в главах 9 и 10.

А пока мы уделим всего минуту, чтобы подсказать, как нужно использовать мультиметр: по той простой причине, что это первая вещь, которую вы должны купить и, возможно, даже единственная, без которой вам никак не обойтись.

Скажем, вы собрали схему и впервые включили ее. Что же делать, если вдруг она не работает? С помощью мультиметра вы легко найдете часть схемы, которая вызвала проблему. Этим универсальным прибором вы можете измерять напряжение, сопротивление и ток в различных точках схемы. К примеру, если в одной части схемы напряжение оказалось равным 5 Вольт, а в другой неожиданно упало до 0 Вольт, то логично будет предположить, что проблема заключается где-то в участке схемы между этими двумя точками. Вы также можете проверить (но только после отключения схемы от источника питания!) обрыв проводов или испорченные детали между этими двумя точками.


Перед тем как проверять схему на функционирование, не забудьте прочесть главу 2 по безопасности при работе с электричеством, иначе вы можете легко навредить себе или вашему будущему устройству.


Удивительный мир величин

Для того чтобы понять результаты полученных измерений, сперва необходимо знать единицы измерения электрических параметров и меры их величин. В следующем разделе мы с вами пройдем элементарные основы курса метрологии.


Единицы измерения в электронике

Единицы измерения служат для количественного определения какой-либо физической величины. К примеру, покупая яблоки, вы измеряете их вес в килограммах. Аналогично мультиметр измеряет сопротивление элементов в омах, напряжение - в вольтах, а ток - в амперах.

В табл. 1.1 показаны общепринятые единицы измерения и их аббревиатуры для физических величин, которые используются в электронике.


Таблица 1.1. Единицы измерения, используемые в электронике
Физическая величина

Аббревиатура

Единицы измерения Символ единиц измерения

Компонент

Сопротивление

R

ом

Ом, Ω

Резистор

Емкость

С

фарад

Ф

Конденсатор

Индуктивность

L

генри

Гн

Катушка индуктивности

Напряжение

U (V или Е)

вольт

В


Ток

I

ампер

А


Мощность

Р

ватт

Вт


Частота

f

герц

Гц



Переход к большим или меньшим величинам

При измерении веса яблок очень даже можно столкнуться с малым количеством яблока (или его кусочка), а можно измерять и центнерами, не так ли? Диапазон измерения физических величин в электронике еще шире. В одной схеме вы можете иметь сопротивление в миллионы ом, тогда как в другой протекающий ток будет меньше одной тысячной ампера. Говоря о подобных величинах - как громадных, так и предельно малых, - приходится иметь дело со специальной терминологией.

Чтобы показывать очень большие и очень малые числа, в электронике применяют специальные префиксы, или приставки, и экспоненциальное представление. В табл. 1.2 показаны самые широко используемые префиксы и тип записи числовых величин.


. Таблица 1.2. Приставки, используемые в электронике

Число

Название

Экспоненциальное представление

Префикс

Аббревиатура

1000000000

1 миллиард

109

Гига

Г

1000000

1 миллион

106

Мега

м

1000

1 тысяча

103

кило

к

100

1 сотня

102



10

1 десяток

101



1

один

100



0,1

1 десятая

10-1



0,01

1 сотая

10-2



0,001

1 тысячная

10-3

милли

м

0,000001

1 миллионная

10-6

микро

мк

0,000000001

1 миллиардная

10-9

нано

н

0,000000000001

1триллионная

10-12

пико

п


Как же правильно прочитать число, записанное как 106 или 10-6? Экспоненциальное представление представляет собой наиболее удобный способ указания того, сколько нулей нужно добавить к числу в десятичной системе счисления, т.е. основанной на степени числа 10. Например, верхний индекс "6" в записи 106 означает, что точка, разделяющая целую и дробную части числа, должна находиться на шесть разрядов правее, а в записи 10-6 - что эту точку нужно сдвинуть на шесть разрядов левее. Таким образом, в числе 1 х 106 разделитель разрядов сдвигается на шесть мест вправо, и мы получаем в результате число 1 000 000 (1 миллион). В числе же 1 х 10-6 разделитель разрядов сдвигается на столько же мест влево, и результатом является 0,000001, или одна миллионная. 3,21 х 104 можно записать, сдвинув запятую на 4 знака вправо: 32100.


Префиксы + единицы измерения = ?

В предыдущих абзацах вы увидели как для обозначения физических величин и единиц их измерения используются аббревиатуры. В этом разделе мы научимся объединять их и использовать очень краткую запись. Например, ток 5 миллиампер можно записать в виде 5 мА, а частоту 3 мегагерца - как 3 МГц.

Кроме того, так же, как при измерении яблок удобнее всего пользоваться килограммами, а при строительстве загородного офиса большой компании вес стальных конструкций определенно будут измерять не иначе как в тоннах, в электронике тоже существуют такие физические величины, для измерения которых пользуются большими числами, и такие, которые измеряются малыми. Это значит, что чаще всего вам придется иметь дело с одним и тем же набором приставок для каждой физической величины. Ниже приведены такие комбинации величин и единиц их измерения.

> Ток: пА, нА, мкА, мА, А.

> Индуктивность: нГн, мГн, мкГн, Гн.

> Емкость: пФ, нФ, мкФ, мФ, Ф.

> Напряжение: мкВ, мВ, В, кВ.

> Сопротивление: Ом, кОм, МОм.

> Частота: Гц, кГц, МГц, ГГц.


Использование некоторых новых терминов

Хотя ранее в этой главе мы уже рассматривали такие понятия, как сопротивление, напряжение и ток, есть еще некоторые термины, которые могут оказаться для вас внове.

Емкость представляет собой способность накапливать заряд под воздействием электрического поля. Такой накопленный заряд может повышать или понижать напряжение более плавно, чем в отсутствие емкости. Для применения данного свойства на практике используется такой компонент, как конденсатор. На рисунке ниже показаны формы двух сигналов: первый сигнал представляет собой снижение напряжения от +5 В до 0 В в отсутствие конденсатора, второй - в схеме с конденсатором.

Частотой переменного тока называется мера повторяемости сигнала. Например, напряжение в настенной розетке совершает один полный цикл изменения 50 раз в секунду. На следующем рисунке показан синусоидальный сигнал, который совершает постоянные переходы от -5 В к +5 В и возвращается обратно к уровню -5 В, завершая тем самым цикл. Говорят, что сигнал имеет частоту 50 Гц, если он со-вершает 50 циклов в секунду.

Индуктивность - это способность запасать энергию в магнитном поле; эта накопленная энергия препятствует изменению тока точно так же, как энергия, накопленная конденсатором, препятствует резким изменениям напряжения. Для использования данного свойства на практике в электронике применяются катушки индуктивности, или дроссели.

Мощность служит мерой количества работы, которую электрический ток совершает при протекании через элементы схемы. К примеру, если приложить к электрической лампе напряжение, подведя ток при помощи проводов, то на нагрев этих проводов будет затрлчивться какая-то работа. В данном случае мощность можно вычислить, перемножив приложенное к лампе напряжение на ток, протекающий по проводам.



Используя информацию, приведенную в табл. 1.1 и 1.2, вы уже можете перевести экспоненциальную запись числа или аббревиатуру физической величины на человеческий язык. Ниже дано несколько примеров:


> мА: миллиампер, или 1 тысячная ампера;

> мкВ: микровольт, или 1 миллионная вольта;

> нФ: нанофарада, или 1 миллиардная фарады;

> кВ: киловольт, или 1 тысяча вольт;

> МОм: мегаом, или 1 миллион ом;

> ГГц: гигагерц, или 1 миллиард герц.


В аббревиатурах префиксов, которые представляют числа, превышающие 1, такие как М (для приставки Мега), используют прописные буквы. Аббревиатуры приставок, которые меньше 1, пишутся со строчной буквы - как, например, в слове милли. Единственным исключением из этого правила является приставка к для обозначения префикса кило-, которая также записывается с маленькой буквы.


Иногда все же для обозначения тысяч используют и прописную литеру К - а именно при записи килоом; если вы увидите запись вида 3,3 К, то это будет значить 3,3 килоома.


Вы должны научиться преобразовывать любое число к экспоненциальному виду, чтобы затем нормально проводить расчеты. Убедиться в этом вы сможете уже в следующем разделе.


Понятие о законе Ома

Итак, давайте предположим, что вы собрали свою первую схему. Вы знаете величину тока, которую компонент схемы может выдержать, не выходя из строя, и напряжение, выдаваемое источником питания. Следовательно, вам нужно рассчитать сопротивление, которое не позволит току в цепи превысить пороговое значение.

В начале 1800-х годов Георг Ом опубликовал уравнение, названное впоследствии законом Ома, которое позволяет выполнить такой расчет. Закон Ома гласит: напряжение равняется произведению тока на сопротивление, или (в стандартной математической записи):

U = I x R

Выводы из закона Ома

Помните ли вы из школы основы алгебры? Давайте еще раз вспомним вместе: если в уравнении с тремя величинами известны две, то достаточно легко рассчитать третью неизвестную величину. Закон Ома основывается именно на таком уравнении; члены уравнения можно переставлять как угодно, но зная любые два, всегда можно вычислить третий. Например, можно сказать, что ток является частным от деления напряжения на сопротивление:

I = U / R


Наконец, можно рассчитать сопротивление при известных токе и напряжении, переставив члены того же уравнения:

R = U/ I


Итак, пока вроде бы все ясно. Теперь давайте попробуем проверить наши знания на практике: пусть есть схема, питающаяся от 12-вольтовой батареи, и электрическая лампа (скажем, большой фонарик). Перед установкой лампочки в фонарик вы измерили сопротивление схемы мультиметром и нашли, что оно равно 9 Ом. Вот формула для расчета электрического тока по закону Ома:


I = U / R = 12 вольт / 9 Ом = 1,3 A


Ну, а что, если вы обнаружили, что лампочка светит чересчур уж ярко? Яркость можно изменить, уменьшив ток, т.е. просто добавив в схему резистор. Изначально мы имели сопротивление схемы 9 Ом; добавив 5-омный резистор в схему, мы повысим ее сопротивление до 14 Ом. В этом случае ток будет равен:


I = U/ R = 12 вольт / 14 Ом = 0,9 А


Расчеты с применением больших и малых величин

Предположим, что у вас есть схема с небольшой сиреной, которая имеет сопротивление 2 килоома, а также 12-вольтовая батарея. Для того чтобы рассчитать ток, вам нужно выразить сопротивление цепи не в килоомах, а в базовых единицах - омах, не используя приставку "кило". В нашем случае это значит, что нужно разделить напряжение на 2000 Ом:

I = U / R = 12 вольт / 2000 Ом = 0,006 A


В результате мы получили ток, записанный как доля 1 А. После окончания расчета будет удобнее вновь использовать префикс, чтобы дать ответ в более лаконичном виде: 0,006 А = 6 мА

Подводя итоги, можно сказать: для проведения расчетов необходимо все исходные величины преобразовать к базовым единицам счисления.


Мощность и закон Ома

Георг Ом (вот уж поистине, наш пострел везде поспел!) также нашел выражение для мощности, вычисляемое при известных напряжении и токе:

Р = U х I; или Мощность = напряжение X ток.

Это уравнение можно использовать для расчета мощности, потребляемой сиреной из предыдущего примера:

Р = 12 В х 0,006 А = 0,072 Вт, или 72 мВт.

Ладно, а что же делать, если напряжение на сирене нам не известно? Вы можете заняться простейшим преобразованием формулы для мощности, используя школьные знания (а вы-то думали, что зря протираете штаны на уроках физики!). Поскольку U = I х R, можно подставить это выражение в формулу для мощности, получив

Р = I2х R; или Мощность = квадрат тока х сопротивление.

Вы также можете использовать алгебраические преобразования, чтобы самостоятельно прикинуть, как можно рассчитать сопротивление, напряжение или ток, зная мощность и любой другой из этих же параметров.

Что, вы действительно так боитесь алгебры? Мария Ивановна завалила вас на экзамене двадцать лет назад? Ну что ж, тогда вы, видимо, с облегчением узнаете, что в Интернете существует множество уже готовых калькуляторов для вычисления по закону Ома. Погфобуйте выйти на тот же www.google.com и ввести в качестве ключевых слов "Калькулятор закона Ома". Ну, и не забудьте заглянуть в главу 17, где приведены 10 основных формул электроники.


. Глава 2

Безопасность людей и устройств

Вэтой главе...

> Здравый смысл при работе с электронными компонентами > Как избежать поражения электрическим током > Контроль статического электричества > Работа с переменным током > Техника безопасности при измерениях мультиметром > Пайка без страха и упрека > Правильная одежда - залог безопасности

Вы, вероятно, знаете, что когда в 1752 году Бенджамин Франклин запустил во время грозы воздушного змея, он открыл некоторые свойства электричества. Фактически он догадывался об этих свойствах и раньше - Франклин просто хотел в такой форме проверить теорию о проводниках. Хотя эксперимент и удался, его можно назвать как угодно, только не безопасным. Франклин едва остался жив, а если бы ему повезло чуть меньше, то чей бы портрет мы созерцали сейчас на сто долларовой банкноте?

Работая с электричеством, вы должны испытывать некое уважение к его мощи. В этой главе мы рассмотрим правила, позволяющие вам обезопасить как себя, так и ваши электронные поделки. Это, пожалуй, единственная глава во всей книге, которую вы обязаны изучить "от корки до корки", даже если вы уже не новичок в электронике.

Шестое чувство в электронике

В электронике шестое чувство - совсем не способность видеть духов чьих-то давно почивших родственников. В данном аспекте шестое чувство - это здравый смысл, т.е. то, что помогает вам остаться в живых в повседневной жизни. Это тот самый внутренний голос, который предостерегает вас от втыкания пальцев в патрон лампы, предварительно не отключив ее от сети.

Ни одна книга в мире не научит здравому смыслу. Мы рождаемся с ним и подсознательно возделываем этот дикий цветок в своем саду. Однако есть пара вещей, на которые только намекни, и будет понятно с полуслова, где речь идет о здравом смысле. Для начала запишем следующее.

> Никогда не стройте догадки. Семь раз промерьте, один - отрежьте. Представьте, что паяльник постоянно хочет ужалить вас, когда оказывается слишком близко. Ваши родные могут подумать, что это у вас от работы легкое помутнение рассудка, но зато вы никогда не обожжетесь и не получите электрический разряд в руку.

> Если не уверены, что делать, подумайте еще раз. Далеко не все в электронике так очевидно, как кажется на первый взгляд.


> He испытывайте судьбу. Если вы уже собрались рискнуть с вероятностью 50 на 50 что-то сделать, не отключаясь от сети, то сначала подумайте - а что же будет, если вы не угадаете.



Никогда не ослабляйте контроль над безопасностью. Не стоит портить все удовольствие от любимого увлечения или, может, даже вашего жизненного призвания простым несоблюдением техники безопасности.

Опасность поражения электрическим током

Вне сомнений, наиболее грозным аспектом работы с электричеством является опасность быть ударенным током. Поражение электрическим током представляет собой реакцию человеческого организма на воздействие электричества. Чаще всего реакция заключается в резком сокращении мышц (в том числе и сердца) и чрезвычайно сильного разогрева в месте контакта кожного покрова с электрической цепью. Нагрев приводит к ожогам, вплоть до смерти или физической травмы. И даже слабые токи могут нарушить сердцебиение.

Степень поражения током зависит от множества факторов, включая ваш возраст, состояние здоровья, величин напряжения и тока. Если вам за пятьдесят, и у вас слабое здоровье, вы вряд ли перенесете удар током так же спокойно, как если бы вы были двадцатипятилетним олимпийским атлетом. Однако не имеет значения, сколько вам и как вы здоровы, напряжение и ток могут оказаться слишком большими, поэтому всегда важно отдавать себе отчет, насколько сильно вы можете пострадать.


Электричество = напряжение + ток

Чтобы полностью понимать опасность поражения электрическим током, нужно знать основы того, из чего складывается электричество. В главе 1 утверждалось, что оно состоит из двух частей: тока и напряжения.

Ток и напряжение всегда действуют вместе, и их величина самым непосредственным образом влияет на последствия поражения электричеством. Давайте еще раз рассмотрим аналогию с водой, протекающей по трубе. Пусть вода- это ток. Увеличение диаметра трубы позволяет пройти через последнюю большему количеству воды, что соответствует увеличению тока в проводе большего сечения. Представьте себя под потоком воды, обрушивающимся с плотины Днепрогэса! Увеличение напора воды в трубе соответствует увеличению напряжения, а вы, должно быть, знаете, что даже небольшие количества воды под сильным давлением могут иметь разрушительную силу. То же утверждение справедливо и к электричеству. И даже малые напряжения при сильном токе могут убить человека.


Постоянный или переменный ток

Электрический ток может иметь две формы.

> Постоянный ток: электроны текут по проводам или в цепи всегда в одном направлении.

> Переменный ток: электроны циклически изменяют направление своего движения по проводам или в цепи.


Если последнее утверждение оказалось для вас новостью, возможно вам следует вернуться к главе 1, где приведены подробности.

Бытовые электрические сети США и Канады имеют напряжение 110 В, а Европы и СНГ - 220 В. Такие высокие величины напряжения запросто могут (часто так и происходит) убить человека. Следует соблюдать максимальную предосторожность, работая с сетью.

Пока вы не станете профессионалом в электронике, на первых порах лучше будет избегать схем, питающихся от домашних электрических сетей. Многим цепям вполне достаточно энергии от обычных батареек или преобразователей напряжения на малогабаритных трансформаторах. При таких токах и напряжениях до тех пор, пока вы не сделаете что-то действительно глупое - например, полижете контакты 9-вольтовой батареи (да-да - вас основательно стукнет током!), вам практически ничего не угрожает.


Основная опасность электрических домашних сетей заключается в воздействии тока на сердечную мышцу. Высокий ток переменного напряжения может вызвать сокращения этой мышцы и серьезные ожоги. Многие инциденты с электричеством происходят тогда, когда рядом никого нет, кто бы мог помочь жертве.

Наиболее часто встречающаяся форма повреждений, вызванных высоким постоянным током, - ожоги. Помните, что, хотя в этом случае напряжение не приходит прямо с электростанции, оно не становится менее опасным. К примеру, не стоит полагать, что, хотя обычная батарея имеет напряжение всего лишь 9 В, она совершенно безобидна. Если закоротить контакты батарейки проводком или при помощи медной монетки, батарея может перегреться - и даже взорваться! При взрыве осколки батарейки могут разлететься с большой скоростью и поранить руки или лицо.


Как не пострадать от удара током

Большинство случаев поражения электрическим током происходит вследствие собственной неосторожности. Вы должны соображать, что делаете, и тогда риск поражения значительно снизится.

Ниже приведены советы о том, как избежать удара током.

> Пытайтесь как можно меньше работать со схемами переменного тока. Конечно, совсем избежать встречи с ними невозможно. Если, например, ваша схема требует питания от розетки с последующим преобразованием переменного тока в постоянный с низким напряжением, то подумайте об использовании уже готового преобразователя с трансформатором, вставляемого в розетку. Так будет значительно безопаснее, чем преобразовывать ток самому.

> Разделяйте физически части схемы, в которых текут переменный и постоянный токи. Такая предосторожность сведет к минимуму опасность поражения током, если вдруг где-то оторвется оголенный провод.

> Убедитесь, что внутри вашей схемы вы обезопасили все проводящие части. Не стоит успокаиваться, если вы просто обмотали изолентой провод под переменным током внутри корпуса вашего устройства. Он может каким-то образом обнажиться или высунуться. Лучше применить хомуты или скобы, чтобы надежно закрепить провод в корпусе. Хомут представляет собой пластмассовую или металлическую ленту, которая зажимается вокруг провода и препятствует вытягиванию последнего из корпуса. Такие нехитрые приспособления можно купить практически в любом магазине электротоваров.

> Всегда, когда возможно, при разработке схем на переменном токе используйте металлический корпус, но только при условии его полного заземления. Для заземления металлического корпуса необходимо пользоваться трехвыводной розеткой и дополнительным "земляным" проводом. Удостоверьтесь, что зеленый провод (обычно таким цветом обозначают провод с потенциалом земли, а земля есть исходная точка для отсчета величин всех напряжений схемы) надежно закреплен на корпусе вашего изделия.

> Если вы не можете стопроцентно гарантировать качество заземления, то используйте пластиковые корпуса. Пластик изолирует вас от случайно оголившихся проводов или находящихся под напряжением частей схемы. В изделиях, которые не имеют полного заземления, следует применять только изолированные блоки питания, как это делается, к примеру, в компактных преобразователях напряжения (маленьких блоках питания, питающихся от сети и выдающих низкие напряжения на тот или иной вид разъема; вы можете использовать такой для зарядки вашего мобильного телефона). Когда вы вставляете преобразователь в розетку, с его выхода поступает практически безопасное низкое напряжение.

> Не стройте из себя клоуна для окружающих. Будьте серьезны и фокусируйте внимание в тот момент, когда работаете с электричеством.

> Не работайте во влажной среде. "Да как же иначе!" - могут воскликнуть некоторые. Но вы будете удивлены, если узнаете, что иногда делают невнимательные люди. И помните, что, наливая чай в чашку, вы не можете быть уверены, что, не разбрызгаете воду вокруг. Лучше оставьте свой напиток или чашечку с кофе на полке в стороне от вашего рабочего места.


Если возможно, работайте вместе с другими людьми. Пусть кто-нибудь всегда будет рядом, когда вы работ аете с электрической сетью переменного тока. Если недалеко будет человек, который сможет набрать 03 в то время, когда вы лежите на полу без сознания, вы будете ему потом очень благодарны. Серьезно.


Оказание первой помощи

Не сомневаемся, вы - самый осторожный и предусмотрительный человек на земле, и вас никогда и ни за что не ударит током, но на всякий случай и вы достаньте где-нибудь правила оказания первой помощи. А вдруг кто-нибудь (ну, разумеется, не вы!) сунет палец в розетку. Вы можете найти последовательность действий даже в Интернете, введя в строку поиска ключевые слова "оказание первой помощи". Такие же правила легко разыскать и в школе, и в отделе техники безопасности на заводе или в лаборатории.

Помощь пострадавшему от удара электрическим током может заключаться в сердечно-дыхательном стимулировании. Однако убедитесь, что вы когда-либо испытывали эту технику, прежде чем применить ее на ком-нибудь, иначе очень легко навредить больше, чем помочь. Информацию о стимулировании сердечной деятельности и дыхания можно найти на сайте

Статическое электричество и его последствия

Существует еще один тип электрической энергии, повседневно встречающийся и опасный как для людей, так и для электроники; он называется статическим электричеством. Электричество называется статическим, поскольку представляет собой форму тока, который накапливается на каком-либо изоляторе, как в ловушке, и остается там даже после того, как вы отключили источник питания. Обычные же токи - как переменные, так и постоянные - в отсутствие питания исчезают.

Древние египтяне открыли явление статического электричества, когда они проводили по кошачьей шерсти гладкими кусочками янтаря. После подобной процедуры янтарь и кошачья шерсть притягивались друг к другу какой-то неведомой силой. Точно так же два клубка кошачьей шерсти, которые были натерты янтарем, отталкивались друг от друга. Хотя египтяне и не понимали этой мистической силы, они знали о ней четыре тысячи лет назад, и доказательством тому были их вечно исцарапанные руки. (Для прямых наследников египетских фараонов - мы настоятельно не рекомендуем идти тренироваться на кошках.)

Статическое электричество накапливается до тех пор, пока оно не получает возможности рассеяться или как-то вырваться на свободу. В большинстве случаев со временем накопленный заряд рассасывается самостоятельно, но иногда он может "выстрелить" сразу. Молния- одна из наиболее распространенных форм мгновенно высвобождающейся энергии статического электричества.


Разработчики стараются сделать так, чтобы электронные компоненты могли выдержать статическое электричество. Так, например, большинство обычных конденсаторов (элементов, накапливающих в электрическом поле энергию) хранят очень малые заряды в течение очень малых периодов времени, но иногда применяются и такие (чаще всего в блоках питания), которые могут хранить небезопасный для жизни заряд в течение часов. Осторожно работайте с крупными конденсаторами, которые могут накапливать значительный заряд, чтобы не получить удар током.


Еще раз о человеке со стодолларовой банкноты

Бенджамин Франклин, впрочем, как и другие ученые того времени, знал о статическом электричестве весьма немного. Несмотря на это, одним из его многих изобретений является первый мотор, работающий целиком от статического электричества. Хотя сегодня этот двигатель представляет собой не более, чем любопытный с научной точки зрения факт, он доказывает еще раз, что статическое электричество - это такая же полноценная форма электричества, как переменный и постоянный токи.

Представьте себе двигатель без батареи. Тяжело? А Бенджамину Франклину приходилось представлять себе такие неправдоподобные вещи каждый день, потому что первые батареи были изобретены только после его смерти. Честь их изобретения принадлежит Алессандро Вольта (1800 год), вот почему его именем названа единица измерения электродвижущей силы (силы притяжения между положительными и отрицательными зарядами). И хотя старина Франклин не застал батареи, именно он первый придумал термин "статика", описывающий физические явления в его аппарате, который накапливал статическое электричество на заряженных стеклянных пластинах.


Вы и сами наверняка сталкивались со статическим электричеством, пересекая комнату, пол в которой был укрыт густым ковром. Когда вы идете по такому ковру, ваши ноги трутся о его мех, и тело накапливает заряд. Случись вам коснуться металлического предмета, например дверной ручки или металлической раковины, и накопленный заряд моментально разрядится, в результате чего вас слегка стукнет током.

Как статика может превратить радиоэлемент в щепотку золы

Электростатический разряд происходит при очень высоком напряжении и чрезвычайно низких токах. Даже простое расчесывание волос в сухой день может привести к накоплению статического заряда с напряжением в десятки тысяч вольт, но ток его освобождения будет столь мал, что вы вряд ли даже почувствуете покалывание. Именно низкие значения тока не дают статическому заряду нанести вам вред, когда происходит мгновенный разряд.

Однако многие компоненты, которые используются в электронном оборудовании, - от простых транзисторов до сложных интегральных микросхем - весьма чувствительны даже к небольшим статическим напряжениям. А уж больших значений напряжений транзисторы и ИС боятся независимо от величин токов. Среди таких чувствительных компонентов следует упомянуть КМОП-транзисторы и микросхемы и большинство компьютерных микропроцессоров. Остальные электронные компоненты также чувствительны к сверхвысоким уровням электростатических напряжений, но с опасными для них уровнями мы редко сталкиваемся в повседневной жизни. Больше о КМОП-технологии, транзисторах и других радиоэлементах вы сможете прочитать в главе 4.

И все же не все электронные компоненты чувствительны к статике; однако ради их же безопасности желательно всегда соблюдать правила работы в антистатической среде. В табл. 2.3 приведен список наиболее важных электронных компонентов и степени их уязвимости к разрядам статического электричества. О самих же компонентах более подробно написано в главах 4 и 5.


Таблица 2.3. Чувствительность к статике различных радиоэлементов

Низкая

Средняя

Высокая

Резисторы
Конденсаторы
Диоды
Трансформаторы
Катушки индуктивности
Все пассивные элементы (батареи, ключи, соединители)
Биполярные транзисторы
Интегральные микросхемы ТТЛ
Множество линейных интегральных микросхем
КМОП-транзисторы и интегральные микросхемы
МОП-транзисторы
Микропроцессоры и аналогичные компоненты

Советы по предотвращению накопления статического электричества

Можно с уверенностью заявить, что в большинстве электронных проектов, которые вы когда-либо захотите сделать, будет содержаться как минимум несколько радиоэлементов, уязвимых воздействию электростатического разряда. Однако вы всегда можете предпринять простые шаги, чтобы воспрепятствовать опасности электростатики.


> Используйте антистатический коврик. Такой коврик должен значительно уменьшить или вообще исключить возможность накопления электростатического заряда на столе и вашем теле в процессе работы с электронными устройствами. Антистатические коврики представляют собой покрытия, которые могут подходить для пола или стола. Настольные коврики выглядят как пористые поверхности, но на самом деле представляют собой проводящую пену. Вы можете (и даже должны) проверить ее проводимость, коснувшись выводами мультиметра (инструмента, узнать о котором во всех подробностях вы сможете в главе 9) разных сторон коврика с его противоположных по длине концов; показания при этом измеряются в омах. В результате вы должны получить какую-то конечную величину сопротивления, но никак не разорванную цепь (цепь, сопротивление которой равно бесконечности; см. главу 7).

> Используйте заземляющий браслет. В качестве дальнейшей меры, препятствующей уменьшению опасности появления статического заряда, при работе с электронными устройствами можно использовать антистатический наручный браслет. Такой браслет, подобный тому, что изображен на рис. 2.1, заземляет ваше тело, и тем самым препятствует накоплению на нем электростатического заряда. Вообще, это средство - самое надежное против электростатики, и при этом самое дешевое. Большинство таких браслетов стоят не более 5 долларов, и с лихвой окупают каждую потраченную копейку. Чтобы использовать браслет, нужно просто закатать рукав рубашки, снять все украшения, часы и другие металлические вещи, а затем обмотать браслет вокруг запястья и затянуть. Провод с защелкой на конце нужно присоединить к какому-либо предмету с потенциалом земли, как это поясняется в краткой инструкции, идущей в комплекте с браслетом.

> Носите антистатическую одежду. Правильный выбор одежды может заметно повлиять на скорость накопления статического заряда на вашем теле. Старайтесь всегда, когда это возможно, носить одежду из натуральных тканей, таких как хлопок или шерсть. Избегайте ношения тканей из полиэстера и ацетата, потому что как раз такие материалы обладают способностью хранить статическое электричество. Лабораторный халат будет не только очень внушительно выглядеть на вас (как будто вы обладаете парой ученых степеней), но и значительно уменьшит риск электростатического разряда. Халаты продаются по весьма умеренным ценам во многих специализированных магазинах, да и в магазине радиотоваров или ближайшем хозяйственном также имеет смысл поискать спецовку или передник.



Заземление рабочих инструментов

Инструменты, которые вы используете, работая с радиоэлементами, также могут накапливать электростатический заряд. Фактически даже значительный заряд. Если ваш паяльник работает от домашней электросети, заземление будет служить наилучшей защитой от разряда статики. Здесь будет даже двойная польза: заземленный паяльник не только исключит возможность ущерба от разряда, но и снизит ваши шансы получить удар током, если вы случайно коснетесь жалом оголенного провода под напряжением.

В самых дешевых паяльниках используется только двухжильный провод, т.е. соединение с землей отсутствует как таковое. Присоединить землю к такому инструменту безопасным и надежным способом практически невозможно, поэтому будет лучше, если вы потратите еще немного денег и купите новый, более серьезный паяльник.

Если вы заземлили себя с помощью антистатического браслета, то вам уже не требуется заземлять все металлические инструменты, такие как отвертки, кусачки и т.п. Ведь теперь все статическое электричество, накопленное этими инструментами, стечет через браслет на землю.


Работа с переменным током

Подавляющее большинство любительских электронных поделок работают от простых батареек. Это достаточно просто, но иногда для схемы требуется больше тока или более высокие значения напряжений, чем может дать батарея. Вместо того, чтобы самостоятельно собирать источник питания, который бы преобразовывал переменный ток из домашней электросети в переменный, намного безопаснее использовать заводской настенный компактный преобразователь (рис. 2.2). Такой преобразователь имеет внутри трансформатор и все остальные необходимые для преобразования детали, и до тех пор, пока вы не полезете его разбирать, можете считать себя в безопасности.


Где можно дешево достать компактные преобразователи напряжений

Вы можете купить преобразователь напряжений как сам по себе, так и в качестве довеска к какому-либудь электронному устройству. Новый преобразователь можно достать практически в любом магазине для радиолюбителей. И, наконец, можно приобрести уже бывший в употреблении прибор. Однако проще всего хорошенько поискать и найти дома преобразователь напряжения от радио- или мобильного телефона либо что-нибудь в этом роде. Просто проверьте значения выдаваемых тока и напряжения, которые обычно пишут прямо на корпусе преобразователя, и решите, подходит ли он к вашей схеме.


Иногда все же приходится работать со схемами, которые требуют потребления тока непосредственно от розетки 220 В. В таком случае вам уже не удастся ограничиться относительно безопасными батарейками, и не получится спрятаться за преобразователем напряжения. При работе с такими схемами всегда проявляйте предельную осторожность. И даже будучи супервнимательным, вы можете еще уменьшить риск при работе с переменным током от домашней электросети, следуя таким простым правилам.


> Всегда следите за тем, чтобы корпус схемы, работающей от переменного тока, был закрыт. Простой кусок пластика отлично оградит вас от опасности поражения электрическим током.

> Никогда не пытайтесь перехитрить собственную защиту устройства. Не используйте предохранители со слишком высокими значениями предельного тока и уж точно никогда не используйте "жучки".

> Работая со схемами переменного тока, всегда держите одну руку в кармане.

Это поможет вам уберечься от случайного касания элементов, находящихся под напряжением. Второй рукой вы будете пользоваться рабочими инструментами. Таким образом, вы точно избежите ситуации, когда одной рукой вы можете коснуться оголенного провода, а второй - земли. Подобная неосторожность приведет к тому, что ток потечет от одной руки к другой, прямо через ваше сердце.

> Постарайтесь, чтобы кто-то всегда находился рядом. Пусть в те моменты, когда вы разбираетесь со схемами переменного тока, рядом будет кто-то, кто сможет оказать вам помощь, случись что.

> Проверьте и перепроверьте результаты вашей работы до подачи напряжения на схему. Наилучший вариант - когда кто-нибудь, кто хоть немного разбирается в схемотехнике, проверит свежим глазом вашу схему до того, как вы впервые подадите на нее питание.

> Периодически осматривайте ваши схемы переменного тока на предмет изношенных, сломанных или оголившихся проводов и компонентов, требующих неотложного ремонта.

Во время тестирования схем, работающих от источника переменного тока, в первую очередь отключите питание. И не просто выключите его кнопкой на корпусе, а выдерните шнур из розетки.


Пошла жара: безопасная пайка

Во время пайки температура горячего жала паяльника может превышать 400°С. Чтобы понять, что в действительности означает эта цифра, достаточно сказать, что ту же температуру можно получить в духовке, выставленной на максимальную температуру. Можете себе представить ощущения, если вы вдруг дотронетесь до наконечника паяльника.

В большинстве электронных схем вполне достаточно совсем небольшого паяльника, вместо того чтобы сразу браться за автоген, напоминающий оружие Терминатора. В главе 8 процесс пайки будет рассмотрен более детально, пока же мы ограничимся перечислением мер безопасности, которые нужно постоянно держать в голове.


> Всегда держите паяльник в специально предназначенном для этого креплении. Никогда не кладите разогретый паяльник прямо на стол или рабочую поверхность. В противном случае вы рискуете устроить пожар ил


Закрыть ... [X]

Поздравления Одежда с твоим именем

Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а Статус за нас за королев мы женщины а